

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Affine Transformations

API

```{eval-rst}
.. automodule:: pycudadecon



	members

	deskewGPU, rotateGPU, affineGPU








```


 # Command Line Interface

If you installed pycudadecon using conda, the original binaries for OTF
generation (radialft) and deconvolution (cudaDeconv) will also be
installed in your conda environment.

cudaDeconv

The cudaDeconv command runs deconvolution (with deskewing and rotation if
desired) on all of the files in the –input-dir whose names match the
pattern –filename-pattern, using the OTF specified by –otf-arg.

Examples

```bash
# deconvolve a folder of images
cudaDeconv /folder/of/images 488nm /path/to/488nm_otf.tif -z 0.3

# a typical lattice experiment might also add the deskew flag and maybe MIPs
cudaDeconv /folder/of/images 488nm /path/to/488nm_otf.tif -z 0.3 -D 31.5 -M 0 0 1
```

Run cudaDeconv –help at the command prompt for the full menu of options

```text
$ cudaDeconv -h


	cudaDeconv compiled for LLSpy.  Version: 0.4.0
	
	--input-dir arg

	Folder of input images



	--filename-pattern arg

	File name pattern to find input images
to process



	--otf-file arg

	OTF file





–drdata arg (=0.104)             Image x-y pixel size (um)
-z [ –dzdata ] arg (=0.25)       Image z step (um)
–drpsf arg (=0.104)              PSF x-y pixel size (um)
-Z [ –dzpsf ] arg (=0.1)         PSF z step (um)
-l [ –wavelength ] arg (=0.525)  Emission wavelength (um)
-W [ –wiener ] arg (=-1)         Wiener constant (regularization


factor); if this value is postive then
do Wiener filter instead of R-L




-b [ –background ] arg (=90)     User-supplied background
-e [ –napodize ] arg (=15)       # of pixels to soften edge with
-E [ –nzblend ] arg (=0)         # of top and bottom sections to blend


in to reduce axial ringing





	-d [ –dupRevStack ]              Duplicate reversed stack prior to decon
	to reduce Z ringing





-n [ –NA ] arg (=1.2)            Numerical aperture
-i [ –RL ] arg (=15)             Run Richardson-Lucy, and set how many


iterations





	-D [ –deskew ] arg (=0)          Deskew angle; if not 0.0 then perform
	deskewing before deconv





–padval arg (=0)                 Value to pad image with when deskewing
-w [ –width ] arg (=0)           If deskewed, the output image’s width
-x [ –shift ] arg (=0)           If deskewed, the output image’s extra


shift in X (positive->left





	-R [ –rotate ] arg (=0)          Rotation angle; if not 0.0 then perform
	rotation around y axis after deconv





-S [ –saveDeskewedRaw ]          Save deskewed raw data to files
-C [ –crop ] arg                 Crop final image size to [x1:x2, y1:y2,


z1:z2]; takes 6 integers separated by
space: x1 x2 y1 y2 z1 z2;





	-M [ –MIP ] arg                  Save max-intensity projection along x,
	y, or z axis; takes 3 binary numbers
separated by space: 0 0 1



	-m [ –rMIP ] arg                 Save max-intensity projection of raw
	deskewed data along x, y, or z axis;
takes 3 binary numbers separated by
space: 0 0 1



	-u [ –uint16 ]                   Save result in uint16 format; should be
	used only if no actual decon is
performed



	-a [ –DoNotAdjustResForFFT ]     Don’t change data resolution size.
	Otherwise data is cropped to perform
faster, more memory efficient FFT: size
factorable into 2,3,5,7)



	–Pad arg (=0)                    Pad the image data with mirrored values
	to avoid edge artifacts. Currently only
enabled when rotate and deskew are
zero.






	--LSC arg

	Lightsheet correction file



	--FlatStart

	Start the RL from a guess that is a
flat image filled with the median image
value.  This may supress noise.






	-p [ –bleachCorrection ]         Apply bleach correction when running
	multiple images in a single batch






	--lzw

	Use LZW tiff compression





–skip arg (=0)                   Skip the first ‘skip’ number of files.
–no_overwrite                    Don’t reprocess files that are already


deconvolved (i.e. exist in the GPUdecon
folder).




-Q [ –DevQuery ]                 Show info and indices of available GPUs
-h [ –help ]                     This help message.
-v [ –version ]                  show version and quit





```

radialft

The radialft command turns a 3D PSF volume into a radially-averaged 2D
complex OTF file that can be used by cudaDeconv.

Examples

`bash
radialft /path/to/psf_file.tif /path/to/new_otf_file.tif --fixorigin 10 --nocleanup
`

Run radialft –help at the command prompt for the full menu of options

```text
$ radialft –help



	--input-file arg

	input PSF file



	--output-file arg

	output OTF file to write





–na arg (=1.25)           NA of detection objective
–nimm arg (=1.29999995)   refractive index of immersion medium
–xyres arg (=0.104000002) x-y pixel size
–zres arg (=0.104000002)  z pixel size
–wavelength arg (=530)    emission wavelength in nm
–fixorigin arg (=5)       for all kz, extrapolate using pixels kr=1 to this


pixel to get value for kr=0





	–krmax arg (=0)           pixels outside this limit will be zeroed
	(overwriting estimated value from NA and NIMM)






	--nocleanup

	elect not to do clean-up outside OTF support



	--background arg

	use user-supplied background instead of the
estimated





-h [ –help ]              produce help message




```


 # Deconvolution

The primary function for performing deconvolution is {func}`~pycudadecon.decon`.

This convenience function is capable of receiving a variety of input types
(filenames, directory names, numpy arrays, or a list of any of those) and
will handle setting up and breaking down the FFT plan on the GPU for all files
being deconvolved. Keywords arguments will be passed internally to the
{class}`~pycudadecon.RLContext` context manager or the
{func}`~pycudadecon.make_otf` {func}`~pycudadecon.rl_decon` functions.

The setup and breakdown for the GPU-deconvolution can also be performed
manually:

	call {func}`~pycudadecon.rl_init` with the shape of the raw data and path to
OTF file.

	perform deconvolution(s) with {func}`~pycudadecon.rl_decon`.

	cleanup with {func}`~pycudadecon.rl_cleanup`

As a convenience, the {class}`~pycudadecon.RLContext` context manager will
perform the setup and breakdown automatically:

```python
data = tiffile.imread(‘some_file.tif’) otf = ‘path_to_otf.tif’ with
RLContext(data.shape, otf) as ctx:


result = rl_decon(data, output_shape=ctx.out_shape)




```

API

```{eval-rst}
.. automodule:: pycudadecon



	members

	decon, rl_init, rl_decon,  RLContext, rl_cleanup








```


 # Installation

The conda package includes the required pre-compiled libraries for Windows and
Linux.

macOS is not supported

`bash
conda install -c conda-forge pycudadecon
`

GPU requirements

This software requires a CUDA-compatible NVIDIA GPU. The underlying cudadecon
libraries have been compiled against different versions of the CUDA toolkit.
The required CUDA libraries are bundled in the conda distributions so you don’t
need to install the CUDA toolkit separately. If desired, you can pick which
version of CUDA you’d like based on your needs, but please note that different
versions of the CUDA toolkit have different GPU driver requirements:

To specify a specific cudatoolkit version, install as follows:

`sh
install with cudatoolkit=10.2
conda install -c condaforge pycudadecon cudatoolkit=10.2
`

```{list-table}
:header-rows: 1


	
	CUDA toolkit


	Linux x86_64 driver


	Win x86_64 driver






	
	11.8


	≥ 520.61.05


	≥ 522.06






	
	11.7


	≥ 515.43.04


	≥ 516.01






	
	11.6


	≥ 510.39.01


	≥ 511.23






	
	11.5


	≥ 495.29.05


	≥ 496.04






	
	11.4


	≥ 470.42.01


	≥ 471.11






	
	11.3


	≥ 465.19.01


	≥ 465.89






	
	11.2


	≥ 460.27.03


	≥ 460.82






	
	11.1


	≥ 455.23


	≥ 456.38






	
	11.0


	≥ 450.36.06


	≥ 451.22






	
	10.2


	≥ 440.33


	≥ 441.22








```

For the most recent information on GPU driver compatibility, please see the
[NVIDIA CUDA Toolkit Release
Notes](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html).

If you run into trouble, feel free to [open an issue on
github](https://github.com/tlambert03/pycudadecon/issues) and describe your
setup.

 # Optical Transfer Functions

These are functions for converting a 3D point spread function (PSF) volume into
a radially averaged 2D complex Optical Transfer Function (OTF) that can be used
for deconvolution. You can either write the OTF to file for later use using
the {class}`~pycudadecon.make_otf` function, or use the
{class}`~pycudadecon.TemporaryOTF` context manager to create and delete a
temporary OTF from a 3D PSF input.

API

```{eval-rst}
.. automodule:: pycudadecon



	members

	make_otf, TemporaryOTF








```


 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

